Earthquake early warning systems like ShakeAlert® work because an alert can be transmitted almost instantaneously, whereas the shaking waves from the earthquake travel through the shallow layers of the Earth at speeds of one to a few kilometers per second (0.5 to 3 miles per second). This diagram shows how such a system would operate. When an earthquake occurs, both compressional (P) waves and transverse (S) waves radiate outward from the epicenter. The P wave, which travels fastest, trips sensors placed in the landscape, transmitting data to a ShakeAlert® processing center where the location, size, and estimated shaking of the earthquake are determined. If the earthquake fits the right profile a ShakeAlert® message is issued by the USGS. The message is picked up by ShakeAlert® partners which could be used to produce an alert to notify people to take a protective action such as Drop, Cover, and Hold On and/or trigger an automated action. USGS image created by Erin Burkett (USGS) and Jeff Goertzen (Orange County Register) and updated by Robert de Groot (USGS).
Washington Emergency Management Division によると、このシステムは運用が開始されても課題が残っています。ワシントン州のセンサーネットワークの完成度は、まだ65%程度であるため、米国地質調査所、ワシントン大学をはじめとする州や大学のパートナーは、2025年後半まで地震計をネットワークに追加し、システムの能力をさらに高めることが予定されています。また、すべての地震に対する携帯電話への警報の配信速度を向上させるため、警報配信パートナーとのさらなる協力が必要とされます。
Map showing the chance of damaging earthquake shaking in 100 years from the 2018 NSHM. The shaking is equivalent to Modified Mercalli Intensity VI and is based on the average 1-second horizontal spectral response acceleration. Ground motions are computed for topographic-based VS30 values (Wald and Allen, 2007). Population density (from LandScan with 1 km x 1 km resolution [Dobson et al., 2000]) is superimposed on the map.